انجمن علمی آمار دانشگاه تبریز

Description
انجمن علمی آمار دانشگاه تبریز
.
.
روابط عمومی :
.
@tbz_amar
We recommend to visit

?? ??? ?? ????? ?

We comply with Telegram's guidelines:

- No financial advice or scams
- Ethical and legal content only
- Respectful community

Join us for market updates, airdrops, and crypto education!

Last updated 4 months, 4 weeks ago

[ We are not the first, we try to be the best ]

Last updated 7 months, 1 week ago

FAST MTPROTO PROXIES FOR TELEGRAM

ads : @IR_proxi_sale

Last updated 3 months, 1 week ago

2 months ago
آشنایی با نظریه تصمیم

آشنایی با نظریه تصمیم
https://t.me/+NXnAcQorWYk4Mzc8

مبانی ریاضی مقدماتی استاد احمدی
https://t.me/+C0BgxmtOJN5mZWY0

روش های نمونه گیری 1
http://t.me/raveshhayenemounehgiri

فرایند های تصادفی 1
https://t.me/+75VO8P2GgdJiZDI0

معادلات دیفرانسیل استاد شهمراد
https://t.me/+x4jZKdG8JxpjYTBk

2 months ago

Mean Squared Error (MSE) Evaluates regression model accuracy
Confusion Matrix Analyzes classification performance
Precision & Recall Measures AI’s effectiveness in detecting important cases (e.g., fraud detection)
F1 Score Balances precision and recall in classification tasks

These statistical measures ensure AI models are not just making predictions, but making them correctly and efficiently.

  1. Statistics in AI Ethics & Bias Detection

A critical area where statistics influences AI is in bias detection and fairness. Many AI models, if not carefully designed, inherit biases from the data they are trained on.
   •   Statistical audits of AI models help identify whether bias exists in decision-making.
   •   Disparate impact analysis uses statistical tests to check if AI systems are treating different demographic groups unfairly.
   •   Algorithmic fairness models adjust predictions to ensure equitable treatment across races, genders, and socioeconomic backgrounds.

For example, facial recognition AI has been criticized for racial bias, and statistical analysis has been used to identify and mitigate such biases.

  1. AI and Big Data: Statistical Scaling Challenges

Modern AI systems must process enormous datasets, often referred to as Big Data. Traditional statistical methods help AI manage and analyze this data efficiently.
   •   Dimensionality Reduction (PCA, t-SNE): Statistical techniques like Principal Component Analysis (PCA) help reduce large datasets without losing important information.
   •   Cluster Analysis: AI uses clustering techniques (e.g., K-Means clustering) to group similar data points, such as customer segmentation in marketing.
   •   Anomaly Detection: AI-powered cybersecurity tools use statistical outlier detection to identify fraud or network intrusions.

Without statistics, AI would struggle to handle large-scale data efficiently.

Conclusion: Statistics is the Backbone of AI

Statistics is not just influencing AI—it is the foundation upon which AI is built. Key takeaways:
   •   Probability & uncertainty modeling allow AI to make real-world decisions.
   •   Regression & classification models are essential for predictive analytics.
   •   Bayesian inference enables AI to learn and update its knowledge dynamically.
   •   Statistical sampling improves AI training efficiency.
   •   Performance metrics ensure AI models are accurate and reliable.
   •   Bias detection & fairness analysis are essential for ethical AI.
   •   Big Data statistical techniques help AI scale to massive datasets.

Without statistics, AI would not exist in its current form. Whether in self-driving cars, recommendation systems, or medical diagnostics, AI relies on statistics to make intelligent, data-driven decisions.

2 months ago

و رابطه با AI مختصر و مفید!!
The Effect of Statistics on Artificial Intelligence (AI)

Statistics plays a fundamental role in the development and functionality of artificial intelligence (AI). From traditional machine learning algorithms to advanced deep learning models, statistical principles are at the core of AI’s ability to process data, recognize patterns, and make predictions. Below, we explore how statistics influences AI across different areas.

  1. Statistics as the Foundation of Machine Learning

Machine learning (ML), a subset of AI, is heavily dependent on statistics. The relationship between statistics and ML can be summarized as follows:

Statistical Concept AI/Machine Learning Application
Probability Theory Predicting outcomes in AI models (e.g., Bayesian Networks)
Regression Analysis Linear regression, logistic regression, deep learning models
Hypothesis Testing Model validation and performance evaluation
Sampling & Estimation Training AI models on smaller data samples
Bayesian Inference Adaptive AI decision-making and reinforcement learning

Without statistical methods, AI would lack the ability to generalize, optimize, or validate its predictions effectively.

  1. Probability and Uncertainty in AI

One of the biggest challenges in AI is dealing with uncertainty, which is where probability theory (a branch of statistics) plays a crucial role.

Examples of Probability in AI:
   •   Natural Language Processing (NLP): Predicting the next word in a sentence using probabilistic models like Hidden Markov Models (HMMs) or transformer models.
   •   Self-Driving Cars: AI in autonomous vehicles must estimate probabilities for actions, such as predicting whether a pedestrian will cross the road.
   •   Medical AI: AI models for disease diagnosis use Bayesian inference to assess the likelihood of a patient having a specific condition based on symptoms.

  1. Statistical Models in AI: Regression and Classification

Most AI models are built upon fundamental statistical techniques such as regression and classification:
   •   Linear & Logistic Regression → Used in predictive modeling, including stock market forecasts and medical diagnosis.
   •   Decision Trees & Random Forests → Applied in credit scoring and fraud detection.
   •   Neural Networks (Deep Learning) → A complex extension of statistical models that power image recognition, chatbots, and autonomous systems.

Statistical classification algorithms enable AI to categorize objects, identify spam emails, detect fraudulent transactions, and even diagnose diseases.

  1. Bayesian Statistics and AI Decision-Making

Bayesian inference is a key statistical method used in AI that allows models to continuously update their knowledge as new data comes in.

How Bayesian Statistics Powers AI:
   •   Spam Filters: Bayesian spam filtering assigns probabilities to emails being spam based on past data.
   •   Self-Learning AI: AI systems like Google’s AlphaGo used Bayesian techniques to refine their strategies over time.
   •   Medical AI Diagnosis: Bayesian networks help AI predict the probability of a disease given certain symptoms.

Bayesian models allow AI to make probabilistic decisions, improving adaptability and accuracy.

  1. Data Sampling & Model Training in AI

AI models must be trained on large datasets, but in many cases, working with the full dataset is impractical. Statistical sampling methods allow AI to learn efficiently from smaller data subsets.

Examples of Sampling in AI:
   •   Bootstrap Sampling: Helps AI estimate accuracy by resampling training data.
   •   Cross-Validation: A statistical technique used to test AI models’ reliability and prevent overfitting.
   •   Monte Carlo Methods: AI uses Monte Carlo simulations to generate possible outcomes in finance, robotics, and game AI.

Without statistical sampling, AI models would be less efficient and more prone to biases.

  1. Statistical Evaluation of AI Performance

To ensure AI models are accurate and reliable, statistical metrics are used for evaluation and validation.

Statistical Metric AI Application

4 months, 1 week ago
منابع و ابزارهای معرفی‌شده در ارائه …

منابع و ابزارهای معرفی‌شده در ارائه اخیر انجمن علمی آمار دانشگاه تبریز به مناسبت هفته پژوهش، را می‌توانید از طریق لینک زیر مشاهده کنید
https://zil.ink/academicesearchwithait

4 months, 1 week ago

با سلام، سخنرانی‌های گروه آمار به مناسبت هفته پژوهش??

4 months, 2 weeks ago

اطلاعیه مهم
برنامه‌های درسی نهایی نیمسال دوم ۱۴۰۴-۱۴۰۳

7 months ago

#اطلاعیه
قابل توجه دانشجویان محترم رشته آمار کد درس دروس جدید  (تحلیل گرافیکی ،احتمال مقدماتی،برنامه نویسی با زبان R) جهت انتخاب واحد به شرح زیر میباشد

تحلیلی گرافیکی: 623221
احتمال مقدماتی: 6232222
برنامه نویسی با زبان R؛ 6232223

لازم به ذکر هست که کد گروه دروس آمار ۳ میباشد

7 months, 1 week ago

#لیست_دروس #نیمسال_اول_۱۴۰۲ متمرکز (عمومی و تربیت بدنی) دانشگاه تبریز (کارشناسی)
@tabriz_statistics

7 months, 1 week ago

#برنامه‌های نیمسال اول ۱۴۰۴-۱۴۰۳

نسخه نهایی برنامه‌های نیمسال اول ۱۴۰۴-۱۴۰۳ برای کلیه دوره‌های کارشناسی، کارشناسی ارشد و دکتری گروه آمار

9 months, 4 weeks ago

فراخوان ثبت نام متقاضیان عضویت در انجمن علمی آمار
انجمن علمی آمار از میان دانشجویان علاقمند به مباحث آماری، عضو می‌پذیرد.
مزایای عضویت:
* شرکت در کارگاه‌های آموزشی و سمینارهای تخصصی
* عضویت در گروه‌های پژوهشی
* انتشار مقالات در نشریه انجمن
* استفاده از کتابخانه و منابع علمی انجمن
* شرکت در مسابقات و جشنواره‌های آماری
* ایجاد شبکه ارتباطی با اساتید آمار
شرایط عضویت:
* داشتن علاقه به مباحث آماری
* تعهد به فعالیت در انجمن
* حداقل معدل ۱۴ در دوره کارشناسی یا کارشناسی ارشد (برای دانشجویان)
مدارک مورد نیاز:
* عکس کارنانه قبلی
* وضعیت آموزشی دانشجو
* شماره دانشجویی
مهلت ثبت نام:
۱۴۰۳/۰۴/۰۵
تا
۱۴۰۳/۰۴/۰۸
نحوه ثبت نام:
متقاضیان محترم می‌توانند جهت دریافت فرم ثبت نام و کسب اطلاعات بیشتر به آیدی [@tabrizstatistics]مراجعه نمایند یا با شماره تلفن [09120175468] تماس حاصل نمایند.

انجمن علمی آمار، بستری مناسب برای ارتقای دانش و مهارت‌های آماری شما

We recommend to visit

?? ??? ?? ????? ?

We comply with Telegram's guidelines:

- No financial advice or scams
- Ethical and legal content only
- Respectful community

Join us for market updates, airdrops, and crypto education!

Last updated 4 months, 4 weeks ago

[ We are not the first, we try to be the best ]

Last updated 7 months, 1 week ago

FAST MTPROTO PROXIES FOR TELEGRAM

ads : @IR_proxi_sale

Last updated 3 months, 1 week ago