?? ??? ?? ????? ?
We comply with Telegram's guidelines:
- No financial advice or scams
- Ethical and legal content only
- Respectful community
Join us for market updates, airdrops, and crypto education!
Last updated 5 months, 2 weeks ago
[ We are not the first, we try to be the best ]
Last updated 7 months, 4 weeks ago
FAST MTPROTO PROXIES FOR TELEGRAM
ads : @IR_proxi_sale
Last updated 3 months, 4 weeks ago
مفهوم Agent چیست و چگونه کار میکنند؟
خانم چیپ هوین بلاگ پست مفصلی راجع به Agent (به قول راسل، هدف غایی هوش مصنوعی) نوشتند. به شدت توصیه میکنیم به دور از هایپ بخونید.
این پست ۴ بخش داره: تعاریف، ابزارها، برنامهریزی، ارزیابی و نقاط شکست!
تعاریف. agent هر چیزیه که از محیطش اطلاعات دریافت کنه و روی محیط عملی انجام بده. پس دو مشخصه داره: محیطش و عملگرهاش. محیطش با هدفی که داره تعریف میشه و عملگرهاش با ابزارهایی که در اختیارش قرار دادیم. مثلا یک ایجنت نرم افزاری محیطش میشه ترمینال و فایل سیستم و اکشنهاش میشه سرچ کردن و خوندن و نوشتن در فایلها (عکس ۱). agentها نیاز به مدل قویتری دارند، چون کارهای مهمتری میکنند و ریسک بالاتری دارند و چون مراحل زیادی طی میکنند، خطاها در هم ضرب میشن و مثلا یک مدل با دقت ۹۵٪ در انجام کاری، بعد از ده مرحله، با ۶۰٪ دقت کار نهایی را تحویل میده.
ابزارها. ابزار بیرونی کمک میکنه ورودی بهتر جمع بشه و اکشنهای بهتری داشته باشیم. اما نباید همه ابزارها را همینجوری در اختیارش بگذاریم چون بعدش فهمیدن و استفاده مفید ازشون سخت میشه. ابزارها سه گروه میشن: knowledge augmentation، capability extension و write actions. دستهی اول ابزارهای تولید محتوا هستند که کمک میکنند بروز باشیم و کمتر هذیون بگیم مثلا سرچ در اینترنت یا API دیتای محصولات فروشگاه. دسته دوم ابزارهای بهبود یهویی توانایی مدل هستند. مثلا مدلهای زبانی در انجام عملگرهای ساده ریاضی مثل تقسیم هم گاهی گند میزنند. پس بهش یه ماشین حساب بدیم یا مثلا از یک مدل تولید عکس جدا استفاده کنیم. دسته سوم. ابزارهایی که تغییر ایجاد میکنند. مثلا ایمیل زدن، انتقال پول.
برنامهریزی. مغز یک agent همون مدلیه که تسک پیچیده را برنامهریزی میکنه. خروجی برنامه یک سری مراحله که باید به ترتیب طی بشه. برنامهریزی باید از اجرا جدا باشه. یعنی از مدل اول میخواهی (مثلا با CoT) برنامه (یا برنامهها) را ارائه بده و بعد از تایید شروع به اجرا کنه. تا اینجا سیستم ما سه قسمت داشت: تولید برنامه، ارزیابش، اجراش (عکس ۲). حالا اگر بیای برای هر کدوم یک agent بذاری، میشه mutli-agent مثلا قبل از هر چیز یه agent تشخیص هدف مشتری (intent) بذاری. راحتترین راه برای تولید برنامه هم پرامپته. مثلا برای آموزش مشتریها راجع به محصولات، به مدل توابع لازم و چند تا مثال از سوالات کاربران و جواب درست را میدیم (عکس ۳).
سه تا نکته مهم در تولید برنامه هست: نحوه تعریف و صدا زدن ابزارها، ریزدانگی برنامه، برنامههای پیچیده. اولی (نحوه معرفی)، یه سری چارچوب داره که به مدل بفهمونیم لازمه از این ابزارها استفاده کنه یا خودش هر طور صلاح میدونه (عکس ۴). در ریزدانگی باید دقت کنیم که نباید زیاد جزئی (تا اسم تابع) از مدل تولیدکننده بخواهی. چون دوباره تعریف کردن یا فاین تیون کردنشون سخته. خوبه بهشون بگی به زبون طبیعی مراحل را تولید کن. بعد یه مدل سادهتر این جملات زبان طبیعی را به اسم توابع تبدیل کنه. برای سومی هم؛ همیشه برنامهها به صورت پشت سر هم نیستند. میتونه موازی یا شرطی باشه یا حلقه داشته باشه (عکس ۵).
در ادامه راجع Reflection صحبت میکنه. agent باید مداوم خودش، خودشو بررسی کنه که از برنامه تا نتیجه همه چی درسته؟ این ارزیابی و اصلاح، میتونه توسط خود agent انجام بشه یا بیرونش. چارچوبهایی مثل ReAct هست که یک حلقه متشکل از برنامه، اکشن و ارزیابیه تا وقتی که به جواب برسه (عکس ۶). اگر ارزیاب مدل دیگهای باشه به این Reflexion میگن.
برای نحوه انتخاب ابزارها از مقالاتی مثل Chameleon صحبت میکنه که از ۱۳ تا ابزار استفاده میکنه. هر چی تعداد ابزارها بیشتر باشه، مثل انسان برای مدل سختتره ازشون استفاده کنه. راههایی برای انتخاب مجموعه ابزارها هست؛ مثلا با کدوم ابزارها خطای مدل بیشتره، حذف ابزار چقدر کارایی را کاهش میده، از کدومها بیشتر استفاده میکنه. مقاله Chameleon نشون داد که تسکها و مدلهای مختلف ابزارهای مختلفی لازم دارند و نباید همینجوری همه ابزارها رو به مدل بدیم (عکس ۷).
ارزیابی و نقاط شکست. شکست سه عامل داره: برنامه، اجرای ابزارها و بهینگی. در گروه اول برنامه میتونه ابزار اشتباه یا پارامترها و ورودیهای اشتباه انتخاب کنه، محدودیت را در نظر نگیره و.... در گروه دوم از ابزار درستی استفاده شده اما خود ابزار (مثلا تبدیل متن به کوئری) غلط کار میکنه. در گروه سوم هم همه چیز درسته اما بهینه نیست. مثلا قدمهای زیادی طی میشه. برای ارزیابی میزان شکست یک agent میشه یه دیتاست از تسکها و ابزارها درست بشه و ازش بخواهیم N تا برنامه درست کنه. بعد ببینیم چندتاشون درست بود، چند تا برنامه باید درست کنه تا به یه برنامه خوب برسیم، چقدر کنده و ....
خلاصهتر فکر کن
از اونجایی که در مسائل استدلالی (reasoning) ، مدل برای رسیدن به جواب نهایی، باید دنباله افکار میانی رو به شکل CoT تولید کنه، یکی از دردهای آزاردهنده اینه که باید گاهی توکنهای زیادی اون وسط تولید بشن و این امر هم هزینه پولی و هم هزینه زمانی زیادی داره. حالا با توجه به این نکته، این که چطور توکنهای کمتری تولید کنیم و در عین حال دقت مطلوبتری رو حفظ کنیم مسالهی پیشروی ماست.
به تازگی کار جالبی اومده با عنوان Chain of Draft یا CoD که همون CoT هست با این تفاوت که در پرامپت از مدل خواسته میشه که هر سگمنت استدلالی (reasoning) که میخواد خروجی بده حداکثر ۵ کلمه طول داشته باشه. نتایجش جالب شده و نشون داده که با میزان توکن و در نتیجه latency خیلی کمتر تونسته دقت قابل رقابت با CoT رو حفظ کنه و حتی بعضی جاها بهتر از اون نتیجه بده. خلاصه که یکی از جهتهای آینده احتمالا اینه که چطور مدلهایی داشته باشیم که کاراتر فکر کنند.
لینک پیپر:
https://arxiv.org/abs/2502.18600
ابزار markitdown؛ همه چیز را به فرمت markdown تبدیل کن!
ما با معرفی یه ابزار بهدردبخور برگشتیم!
مایکروسافت یک کتابخونه به نام MarkItDown را به صورت متنباز بیرون داده که باهاش میتونید فایلهایی با فرمتهای زیر (فرمتهای آفیسش مهمه) را به فرمت markdown (مثل فایلهای readme گیت) تبدیل کنید. همچین ابزاری موقع ساختن دیتاست (برای آموزش مدل زبانی مثلا) خیلی میتونه کمک کنه. تا حالا هم بیشتر از ۳۰ هزارتا استار گرفته. فایل ورد فارسی رو هم خوب پشتیبانی میکنه اما پیدیاف فارسیش تعریفی نداره. برای OCR و تبدیل صوت هم به llmها مثل جیپیتی وصل میشه. خدا بده برکت. فرمتهای پشتیبانی شده:
• PDF
• PowerPoint
• Word
• Excel
• Images (EXIF metadata and OCR)
• Audio (EXIF metadata and speech transcription)
• HTML
• Text-based formats (CSV, JSON, XML)
• ZIP files (iterates over contents)
لینک ریپو گیتهاب:
https://github.com/microsoft/markitdown/tree/main
?? ??? ?? ????? ?
We comply with Telegram's guidelines:
- No financial advice or scams
- Ethical and legal content only
- Respectful community
Join us for market updates, airdrops, and crypto education!
Last updated 5 months, 2 weeks ago
[ We are not the first, we try to be the best ]
Last updated 7 months, 4 weeks ago
FAST MTPROTO PROXIES FOR TELEGRAM
ads : @IR_proxi_sale
Last updated 3 months, 4 weeks ago