MLinside - школа ML

Description
Все о машинном обучении
Наш сайт: http://mlinside.ru
Демо курса "База ML": https://stepik.org/course/218409
Чат коммьюнити: @ml_insidechat
По любым вопросам: @ml_inside_manager
YouTube канал: https://www.youtube.com/@ML_inside
Advertising
We recommend to visit
HAYZON
HAYZON
6,053,581 @hayzonn

لا اله الا الله محمد رسول الله

👤 𝐅𝐨𝐮𝐧𝐝𝐞𝐫: @Tg_Syprion
🗓 ᴀᴅᴠᴇʀᴛɪsɪɴɢ: @SEO_Fam
Мои каналы: @mazzafam

Last updated 3 weeks, 1 day ago

Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.

Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support

Last updated 2 weeks, 2 days ago

Канал для поиска исполнителей для разных задач и организации мини конкурсов

Last updated 1 month ago

5 days, 4 hours ago

🧙ML не волшебная палочка: разбиваем мифы
Машинное обучение часто воспринимается как магия, которая решает любые проблемы бизнеса: стоит только нажать кнопку, и алгоритм сам все сделает. Но правда в том, что ML — это не волшебная палочка, а инструмент, который требует данных, правильной постановки задач и усилий со стороны специалистов.

Давайте развеем популярные мифы о машинном обучении!

🧩 Миф 1: ML работает без данных

Реальность: Алгоритмы машинного обучения питаются данными. Чем больше качественных данных у вас есть, тем лучше будет результат. Если данных недостаточно, никакая модель не сможет стать «умной».

Пример: Вы хотите рекомендовать товары в интернет-магазине, но у вас нет информации о пользователях и их покупках. В таком случае алгоритм просто не сможет обучиться.

🛠️ Миф 2: Достаточно настроить модель один раз, и она будет работать вечно
Реальность: Рынки и пользовательские предпочтения постоянно меняются. Модели машинного обучения требуют регулярного обновления, мониторинга и адаптации к новым условиям.

Пример: Представьте, что вы создали модель для прогнозирования продаж летом. Если не обновить её перед зимним сезоном, она потеряет актуальность.

📊 Миф 3: ML сразу увеличивает прибыль
Реальность: Алгоритмы — это не готовое решение, а часть стратегии. Чтобы машинное обучение приносило результаты, важно правильно интегрировать его в бизнес-процессы, понимать метрики и настраивать в соответствии с целями компании.

Пример: ML может предсказать, какие клиенты с большей вероятностью совершат покупку. Но если отдел продаж не будет использовать эти данные, эффект от внедрения сведется к нулю.

🤖 Миф 4: Любой может настроить ML без подготовки
Реальность: Работать с машинным обучением без понимания математики, алгоритмов и специфики бизнеса крайне сложно. Чтобы модель давала ценные результаты, важно иметь знания и навыки в области анализа данных, программирования и построения моделей.

Как это исправить?
Научиться задавать правильные вопросы к данным и разрабатывать модели под конкретные задачи.

🎯 Что это значит для бизнеса?
ML не магия, а мощный инструмент, который в руках подготовленных специалистов может стать вашим конкурентным преимуществом. Он помогает автоматизировать процессы, экономить ресурсы и находить новые возможности для роста.

🔍 Хотите развить эти навыки и узнать больше?Не пропустите наш вебинар с Никитой Зелинсим 19 декабря! Мы разберем, как правильно валидировать модели и адаптировать их для решения реальных задач.

👉 Регистрируйтесь на вебинар здесь

6 days, 3 hours ago
MLinside - школа ML
6 days, 3 hours ago
MLinside - школа ML
1 week, 5 days ago
MLinside - школа ML
1 week, 5 days ago
MLinside - школа ML
1 week, 5 days ago
MLinside - школа ML
We recommend to visit
HAYZON
HAYZON
6,053,581 @hayzonn

لا اله الا الله محمد رسول الله

👤 𝐅𝐨𝐮𝐧𝐝𝐞𝐫: @Tg_Syprion
🗓 ᴀᴅᴠᴇʀᴛɪsɪɴɢ: @SEO_Fam
Мои каналы: @mazzafam

Last updated 3 weeks, 1 day ago

Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.

Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support

Last updated 2 weeks, 2 days ago

Канал для поиска исполнителей для разных задач и организации мини конкурсов

Last updated 1 month ago