Ddos Collection - MrZx

Description
Boost This Channel I will be excited
Free Leak From @CeoFork, @Nossynotyoursy.
@mscjs
@Jow2x
@fly1x

Only for educational purpose.

Group leak anti Advertising/iklan
Also Join : t.me/NusaStresser
Advertising
We recommend to visit

Community chat: https://t.me/hamster_kombat_chat_2

Twitter: x.com/hamster_kombat

YouTube: https://www.youtube.com/@HamsterKombat_Official

Bot: https://t.me/hamster_kombat_bot
Game: https://t.me/hamster_kombat_bot/

Last updated 4 months ago

Your easy, fun crypto trading app for buying and trading any crypto on the market.

📱 App: @Blum
🆘 Help: @BlumSupport
ℹ️ Chat: @BlumCrypto_Chat

Last updated 3 months, 3 weeks ago

Turn your endless taps into a financial tool.
Join @tapswap_bot


Collaboration - @taping_Guru

Last updated 1 week ago

4 months ago

tresh flooder leakan yang katanya no leak leak

4 months ago

LINTAR BROWSER
LEAK BY @jo1el trash browser dont buy it
flood source on @jo1el

Don't buy from @Lintar21 later he will regret it like my friend

4 months ago

```
import tensorflow as tf
from tensorflow.keras import layers, models
import cv2
import os
import numpy as np
from sklearn.preprocessing import LabelEncoder

def load_data(directory):
images = []
labels = []

for filename in os.listdir(directory): if filename.endswith(".jpg"): img = cv2.imread(os.path.join(directory, filename), cv2.IMREAD\_GRAYSCALE) img = cv2.resize(img, (128, 128)) images.append(img) label = filename.split(".")[0] labels.append(label) images = np.array(images).reshape(\-1, 128, 128, 1) / 255.0 return images, labels

images, labels = load_data("dataset")

encoder = LabelEncoder()
labels_encoded = encoder.fit_transform(labels)
labels_encoded = tf.keras.utils.to_categorical(labels_encoded)

model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(len(set(labels)), activation='softmax')
])

model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

model.fit(images, labels_encoded, epochs=10)

model.save("text_detection_model.jawa")
```

folder for your dataset image
/dataset/

tensorflow training for detection text on image
“captcha text”

4 months, 1 week ago
4 months, 1 week ago

CONNECT (v1.2) x Ratelimit Detect
@jo1el
@mscjs

4 months, 1 week ago
4 months, 2 weeks ago
4 months, 3 weeks ago

I'm looking for 1 person who is good at c++ to make this team team will make a c++ browser method pm @mscjs

4 months, 3 weeks ago
Ddos Collection - MrZx
4 months, 3 weeks ago
Ddos Collection - MrZx
We recommend to visit

Community chat: https://t.me/hamster_kombat_chat_2

Twitter: x.com/hamster_kombat

YouTube: https://www.youtube.com/@HamsterKombat_Official

Bot: https://t.me/hamster_kombat_bot
Game: https://t.me/hamster_kombat_bot/

Last updated 4 months ago

Your easy, fun crypto trading app for buying and trading any crypto on the market.

📱 App: @Blum
🆘 Help: @BlumSupport
ℹ️ Chat: @BlumCrypto_Chat

Last updated 3 months, 3 weeks ago

Turn your endless taps into a financial tool.
Join @tapswap_bot


Collaboration - @taping_Guru

Last updated 1 week ago