RecommenderSystems

Description
این کانال تخصصی به منظور ارسال مطالب علمی پژوهشی علوم مهندسی کامپیوتر در موضوع سیستمهای پیشنهاد دهنده یا توصیه گر و زمینه های مرتبط با آن و نیز اطلاع رسانی از آخرین اخبار دانشگاهي و مقالات علمي تحقيقاتي، ایجاد شده و فعالیت کانال صرفا جنبه علمی پژوهشی دارد
We recommend to visit

💸 سیگنال های فول تخصصی با در دست داشتن رکورد سود در ایران.

@Reza_kamiar🔝

Last updated 4 weeks ago

نوبیتکس نخستین بازار حرفه‌ای مبادله ارزهای دیجیتال در ایران؛ بی‌واسطه و به‌سادگی بیت‌کوین و سایر رمزارزها را بخرید و بفروشید

Website: Nobitex.ir
Mag: @NobitexMag
Instagram: https://www.instagram.com/Nobitex_Market/

Last updated 3 weeks, 6 days ago

تم آیفون و اندروید برای تلگرامت🪐🌑

ارتباط: @tellocbot

Last updated 1 month ago

5 months ago

https://research.google/blog/transformers-in-music-recommendation/
? We present a music recommendation ranking system that uses Transformer models to better understand the sequential nature of user actions based on the current user context.

#Transformers #Music #Ranking #Transformer #Model #Models
@Recommender_Systems

7 months, 3 weeks ago

2024 Building Recommendation Systems in Python and JAXHands-on Production Systems at Scale
By Bryan Bischof and Hector Yee

Submit your own errata for this product.: https://www.oreilly.com/catalog/errata.csp?isbn=9781492097990
#Building #Python #JAX #Hands_on #Production #Systems #Scale #HandsOn #Hands #OReilly
@Recommender_Systems

8 months ago

2022 Data Quality Fundamentals A Practitioner's Guide to Building Trustworthy Data Pipelines O'Reilly Media
#Data #Quality #Fundamentals #Practitioner #Guide #Trustworthy #OReilly #Media
@Recommender_Systems

9 months, 3 weeks ago

2024 CNNRec: Convolutional Neural Network based recommender systems - A survey
Abstract: Easy internet access and technological advancements have resulted in information overload and a plethora of options, making decision-making extremely difficult. Recommender System (RS) is a potential solution for assisting users in making decisions by recommending or predicting product ratings. Three fundamental forms of RS that use implicit or explicit feedback for recommendation are collaborative, content-based, and hybrid filtering. Ratings are the most common form of feedback, but product descriptions, reviews, images, audios, and videos are also important and can help improve the performance of the traditional RS. These additional variables can have a significant impact on RS’s performance. Traditional RSs used approaches based on the nearest neighbor or other machine learning models, but thanks to recent advances in artificial intelligence and deep learning, RSs are now being developed using Convolutional Neural Networks (CNN), which can efficiently exploit auxiliary information. In addition to comparing CNN-based RSs on common grounds, this article provides a full examination of CNN-based RSs and how they might use various types of auxiliary information. The study also discusses data characteristics, data statistics, and auxiliary information in a variety of publicly available datasets. Different evaluation measures for RSs are also discussed, and readers are provided with interesting challenges and open research issues.
https://www.sciencedirect.com/science/article/abs/pii/S0952197624002203
https://doi.org/10.1016/j.engappai.2024.108062
#CNNRec #Convolutional #NeuralNetwork #NN #CNN #ConvolutionalNeuralNetwork #Convolutional_Neural_Network #Neural #NeuralNetworks #Neural_Network #Networks #Neural_Networks #Survey
@Recommender_Systems

9 months, 3 weeks ago

2023 CS224W: Machine Learning with Graphs Stanford / Fall 2023
?https://web.stanford.edu/class/cs224w/
? What is this course about?
Complex data can be represented as a graph of relationships between objects. Such networks are a fundamental tool for modeling social, technological, and biological systems. This course focuses on the computational, algorithmic, and modeling challenges specific to the analysis of massive graphs. By means of studying the underlying graph structure and its features, students are introduced to machine learning techniques and data mining tools apt to reveal insights on a variety of networks.
Topics include: representation learning and Graph Neural Networks; algorithms for the World Wide Web; reasoning over Knowledge Graphs; influence maximization; disease outbreak detection, social network analysis.
11. GNNs for recommenders
▫️ Neural Graph Collaborative Filtering
▫️ LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
▫️ Graph Convolutional Neural Networks for Web-Scale Recommender Systems
#MachineLearning #Graphs #Machine_Learning #Graph #Stanford #Course #ML #Modeling #Computational #Algorithmic #GNN #Reasoning #Social #GraphNeuralNetworks #Graph_Neural_Networks #GNNs #GraphNeuralNetwork #Graph_Neural_Network #Collaborative #WebScale #Convolutional #Network
@Recommender_Systems

9 months, 4 weeks ago

? فایل جامع و کامل از ضریب تاثیر و چارک کیفی نشریات ISC شامل اطلاعات زیر
ضريب تاثير آنی - استنادهای تجمعی - ضریب تاثیر - شاپای الکترونیکی - شاپا و تعداد مقالات
#پایگاه_استنادی_علوم_جهان_اسلام
#ISC #Journal #Iranian #ISI #Search #IF #Research #Tools #ResearchTools #Research_Tools
@Recommender_Systems

We recommend to visit

💸 سیگنال های فول تخصصی با در دست داشتن رکورد سود در ایران.

@Reza_kamiar🔝

Last updated 4 weeks ago

نوبیتکس نخستین بازار حرفه‌ای مبادله ارزهای دیجیتال در ایران؛ بی‌واسطه و به‌سادگی بیت‌کوین و سایر رمزارزها را بخرید و بفروشید

Website: Nobitex.ir
Mag: @NobitexMag
Instagram: https://www.instagram.com/Nobitex_Market/

Last updated 3 weeks, 6 days ago

تم آیفون و اندروید برای تلگرامت🪐🌑

ارتباط: @tellocbot

Last updated 1 month ago