Python Projects & Resources

Description
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun

Buy ads: https://telega.io/c/pythondevelopersindia
We recommend to visit

News and announcements of the library. No books here.
??Official Chinese channel: t.me/zlib_china_official
? https://z-library.sk
https://en.wikipedia.org/wiki/Z-Library
? https://twitter.com/Z_Lib_official
? https://mastodon.social/@Z_Lib_official

Last updated 8ย months ago

Intel slava is a Russian News aggregator who covers Conflicts/Geopolitics and urgent news from around the world.

For paid promotions and feedback contact us at: @CEOofBelarus

Last updated 1ย month, 4ย weeks ago

๐Ÿ’ซWelcome to the best book channel of Telegram.

โœจBuy ads: https://telega.io/c/BooksHub25

โœจContact admin โž  @Bookshub_contact_bot

โœจ Copyright Disclaimerโž  https://telegra.ph/LEGAL-COPYRIGHT-DISCLAIMER-09-18

3ย weeks ago

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐ข๐ง๐  ๐๐ž๐œ๐ž๐ฌ๐ฌ๐š๐ซ๐ฒ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

๐‹๐จ๐š๐๐ข๐ง๐  ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ:

df = pd.read_csv('your_dataset.csv')

๐ˆ๐ง๐ข๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ฌ๐ฉ๐ž๐œ๐ญ๐ข๐จ๐ง:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

๐‡๐š๐ง๐๐ฅ๐ข๐ง๐  ๐Œ๐ข๐ฌ๐ฌ๐ข๐ง๐  ๐•๐š๐ฅ๐ฎ๐ž๐ฌ:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

๐ƒ๐š๐ญ๐š ๐•๐ข๐ฌ๐ฎ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

๐‚๐š๐ญ๐ž๐ ๐จ๐ซ๐ข๐œ๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘

3ย weeks ago
๐Ÿฐ ๐— ๐˜‚๐˜€๐˜-๐——๐—ผ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ โ€ฆ

๐Ÿฐ ๐— ๐˜‚๐˜€๐˜-๐——๐—ผ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜!๐Ÿ˜

Want to stand out in Data Science?๐Ÿ“

These free courses by Microsoft will boost your skills and make your resume shine! ๐ŸŒŸ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3D3XOUZ

๐Ÿ“ข Donโ€™t miss out! Start learning today and take your data science journey to the next level! ๐Ÿš€

3ย weeks, 1ย day ago
***๐ŸŽ“*** **Build Your Career In Data โ€ฆ

๐ŸŽ“ Build Your Career In Data Analytics! ๐Ÿ“Š

๐ŸŒŸ 2000+ Students Placed
๐Ÿ’ฐ 7.4 LPA Average Package
๐Ÿš€ 41 LPA Highest Package
๐Ÿค 500+ Hiring Partners

Registration link: https://tracking.acciojob.com/g/PUfdDxgHR

Limited Seats, Register Now!โœจ

3ย weeks, 1ย day ago

Python Roadmap for 2025: Complete Guide

  1. Python Fundamentals
    1.1 Variables, constants, and comments.
    1.2 Data types: int, float, str, bool, complex.
    1.3 Input and output (input(), print(), formatted strings).
    1.4 Python syntax: Indentation and code structure.

  2. Operators
    2.1 Arithmetic: +, -, , /, %, //, *.
    2.2 Comparison: ==, !=, <, >, <=, >=.
    2.3 Logical: and, or, not.
    2.4 Bitwise: &, |, ^, ~, <<, >>.
    2.5 Identity: is, is not.
    2.6 Membership: in, not in.

  3. Control Flow
    3.1 Conditional statements: if, elif, else.
    3.2 Loops: for, while.
    3.3 Loop control: break, continue, pass.

  4. Data Structures
    4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
    4.2 Tuples: Immutability, packing/unpacking.
    4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
    4.4 Sets: Unique elements, set operations (union, intersection).
    4.5 Strings: Immutability, methods (split(), strip(), replace()).

  5. Functions
    5.1 Defining functions with def.
    5.2 Arguments: Positional, keyword, default, args, *kwargs.
    5.3 Anonymous functions (lambda).
    5.4 Recursion.

  6. Modules and Packages
    6.1 Importing: import, from ... import.
    6.2 Standard libraries: math, os, sys, random, datetime, time.
    6.3 Installing external libraries with pip.

  7. File Handling
    7.1 Open and close files (open(), close()).
    7.2 Read and write (read(), write(), readlines()).
    7.3 Using context managers (with open(...)).

  8. Object-Oriented Programming (OOP)
    8.1 Classes and objects.
    8.2 Methods and attributes.
    8.3 Constructor (init).
    8.4 Inheritance, polymorphism, encapsulation.
    8.5 Special methods (str, repr, etc.).

  9. Error and Exception Handling
    9.1 try, except, else, finally.
    9.2 Raising exceptions (raise).
    9.3 Custom exceptions.

  10. Comprehensions
    10.1 List comprehensions.
    10.2 Dictionary comprehensions.
    10.3 Set comprehensions.

  11. Iterators and Generators
    11.1 Creating iterators using iter() and next().
    11.2 Generators with yield.
    11.3 Generator expressions.

  12. Decorators and Closures
    12.1 Functions as first-class citizens.
    12.2 Nested functions.
    12.3 Closures.
    12.4 Creating and applying decorators.

  13. Advanced Topics
    13.1 Context managers (with statement).
    13.2 Multithreading and multiprocessing.
    13.3 Asynchronous programming with async and await.
    13.4 Python's Global Interpreter Lock (GIL).

  14. Python Internals
    14.1 Mutable vs immutable objects.
    14.2 Memory management and garbage collection.
    14.3 Python's name == "main" mechanism.

  15. Libraries and Frameworks
    15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
    15.2 Web Development: Flask, Django, FastAPI.
    15.3 Testing: unittest, pytest.
    15.4 APIs: requests, http.client.
    15.5 Automation: selenium, os.
    15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.

  16. Tools and Best Practices
    16.1 Debugging: pdb, breakpoints.

16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.

๐Ÿ‘‡ Python Interview ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€
https://t.me/dsabooks

๐Ÿ“˜ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://topmate.io/coding/914624

๐Ÿ“™ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z

Join What's app channel for jobs updates: t.me/getjobss

3ย weeks, 1ย day ago

๐—ง๐—ผ๐—ฝ ๐Ÿด ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ฏ๐—ฟ๐—ฎ๐—ฟ๐—ถ๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ

  1. NumPy
    โ†’ Fundamental library for numerical computing.
    โ†’ Used for array operations, linear algebra, and random number generation.

  2. Pandas
    โ†’ Best for data manipulation and analysis.
    โ†’ Offers DataFrame and Series structures for handling tabular data.

  3. Matplotlib
    โ†’ Creates static, animated, and interactive visualizations.
    โ†’ Ideal for line charts, scatter plots, and bar graphs.

  4. Seaborn
    โ†’ Built on Matplotlib for statistical data visualization.
    โ†’ Supports heatmaps, violin plots, and pair plots for deeper insights.

  5. Scikit-Learn
    โ†’ Essential for machine learning tasks.
    โ†’ Provides tools for regression, classification, clustering, and preprocessing.

  6. TensorFlow
    โ†’ Used for deep learning and neural networks.
    โ†’ Supports distributed computing for large-scale models.

  7. SciPy
    โ†’ Extends NumPy with advanced scientific computations.
    โ†’ Useful for optimization, signal processing, and integration.

  8. Statsmodels
    โ†’ Designed for statistical modeling and hypothesis testing.
    โ†’ Great for linear models, time series analysis, and statistical tests.

๐—ง๐—ถ๐—ฝ: Start with NumPy and Pandas to build your foundation, then explore others as per your data science needs!

3ย weeks, 1ย day ago
๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต โ€ฆ

๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜๐—ฒ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ!๐Ÿ˜

Preparing for a Data Analytics interview?โœจ๏ธ

๐Ÿ“Œ Donโ€™t waste time searchingโ€”this guide has everything you need to ace your interview!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4h6fSf2

Get a structured roadmap Now โœ…

3ย weeks, 2ย days ago

Jupyter Notebooks are essential for data analysts working with Python.

Hereโ€™s how to make the most of this great tool:

  1. ๐—ข๐—ฟ๐—ด๐—ฎ๐—ป๐—ถ๐˜‡๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ผ๐—ฑ๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—–๐—น๐—ฒ๐—ฎ๐—ฟ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ:

Break your notebook into logical sections using markdown headers. This helps you and your colleagues navigate the notebook easily and understand the flow of analysis. You could use headings (#, ##, ###) and bullet points to create a table of contents.

  1. ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€:

Add markdown cells to explain your methodology, code, and guidelines for the user. This Enhances the readability and makes your notebook a great reference for future projects. You might want to include links to relevant resources and detailed docs where necessary.

  1. ๐—จ๐˜€๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ช๐—ถ๐—ฑ๐—ด๐—ฒ๐˜๐˜€:

Leverage ipywidgets to create interactive elements like sliders, dropdowns, and buttons. With those, you can make your analysis more dynamic and allow users to explore different scenarios without changing the code. Create widgets for parameter tuning and real-time data visualization.

  1. ๐—ž๐—ฒ๐—ฒ๐—ฝ ๐—œ๐˜ ๐—–๐—น๐—ฒ๐—ฎ๐—ป ๐—ฎ๐—ป๐—ฑ ๐— ๐—ผ๐—ฑ๐˜‚๐—น๐—ฎ๐—ฟ:

Write reusable functions and classes instead of long, monolithic code blocks. This will improve the code maintainability and efficiency of your notebook. You should store frequently used functions in separate Python scripts and import them when needed.

  1. ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ๐—น๐˜†:

Utilize libraries like Matplotlib, Seaborn, and Plotly for your data visualizations. These clear and insightful visuals will help you to communicate your findings. Make sure to customize your plots with labels, titles, and legends to make them more informative.

  1. ๐—ฉ๐—ฒ๐—ฟ๐˜€๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ผ๐˜๐—ฒ๐—ฏ๐—ผ๐—ผ๐—ธ๐˜€:

Jupyter Notebooks are great for exploration, but they often lack systematic version control. Use tools like Git and nbdime to track changes, collaborate effectively, and ensure that your work is reproducible.

  1. ๐—ฃ๐—ฟ๐—ผ๐˜๐—ฒ๐—ฐ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ผ๐˜๐—ฒ๐—ฏ๐—ผ๐—ผ๐—ธ๐˜€:

Clean and secure your notebooks by removing sensitive information before sharing. This helps to prevent the leakage of private data. You should consider using environment variables for credentials.

Keeping these techniques in mind will help to transform your Jupyter Notebooks into great tools for analysis and communication.

I have curated the best interview resources to crack Python Interviews ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ

3ย weeks, 2ย days ago
๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ โ€ฆ

๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ & ๐—”๐—œ!๐Ÿ˜

Want to boost your career with in-demand skills like ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ, ๐—”๐—œ, ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด, ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ค๐—Ÿ?๐Ÿ“Š

These ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ provide hands-on learning with interactive labs and certifications ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ to enhance your ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Xrrouh

Perfect for beginners & professionals looking to upgrade their expertiseโ€”taught by industry experts!โœ…๏ธ

3ย weeks, 3ย days ago

Python Basic Interview Questions for Freshers
[Part -2]

6) What are the tools that help to find bugs or perform static analysis?

PyChecker is a static analysis tool that detects the bugs in Python source code and 
warns about the style and complexity of the bug. Pylint is another tool that verifies 
whether the module meets the coding standard. 
7) What are Python decorators?
A Python decorator is a specific change that we make in Python syntax to alter 
functions easily. 
8) What is the difference between list and tuple?
The difference between list and tuple is that list is mutable while tuple is not. Tuple 
can be hashed for e.g as a key for dictionaries. 
9) How are arguments passed by value or by reference?
Everything in Python is an object and all variables hold references to the objects. The 
references values are according to the functions; as a result you cannot change the 
value of the references. However, you can change the objects if it is mutable. 
10) What is Dict and List comprehensions are?
They are syntax constructions to ease the creation of a Dictionary or List based on 
existing iterable. 
11) What are the built-in type does python provides?
There are mutable and Immutable types of Pythons built in types Mutable built-in 
types 
โ€ข List 
โ€ข Sets 
โ€ข Dictionaries 
Immutable built-in types 
โ€ข Strings 
โ€ข Tuples 
โ€ข Numbers

Python Interview Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Like for more โค๏ธ

3ย weeks, 3ย days ago
๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐˜„๐—ถ๐˜๐—ต ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ โ€ฆ

๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐˜„๐—ถ๐˜๐—ต ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€!๐Ÿ˜

Want to learn in-demand skills from Google? ๐ŸŒŸ

Here are 4 FREE Courses to help you become job-ready:๐Ÿ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3QH8KL8

Perfect for students, professionals & career-switchers!๐Ÿ“Š

We recommend to visit

News and announcements of the library. No books here.
??Official Chinese channel: t.me/zlib_china_official
? https://z-library.sk
https://en.wikipedia.org/wiki/Z-Library
? https://twitter.com/Z_Lib_official
? https://mastodon.social/@Z_Lib_official

Last updated 8ย months ago

Intel slava is a Russian News aggregator who covers Conflicts/Geopolitics and urgent news from around the world.

For paid promotions and feedback contact us at: @CEOofBelarus

Last updated 1ย month, 4ย weeks ago

๐Ÿ’ซWelcome to the best book channel of Telegram.

โœจBuy ads: https://telega.io/c/BooksHub25

โœจContact admin โž  @Bookshub_contact_bot

โœจ Copyright Disclaimerโž  https://telegra.ph/LEGAL-COPYRIGHT-DISCLAIMER-09-18