fp math

Description
Math chat by Fedya Petrov
Advertising
We recommend to visit

Для связи - @lehamagnat

Last updated 9 months, 3 weeks ago

Сотрудничество: @pr_malinaa

⚡️Разговорная беседа:⚡️

https://t.me/your_padshiy_angell

✨Инст:✨

https://instagram.com/your.padshiy.angel?igshid=YmMyMTA2M2Y=

Last updated 3 months, 1 week ago

Last updated 1 year, 3 months ago

1 month, 3 weeks ago

На Южном математическом турнире (пользуясь случаем, поздравляю с победой команду солнечного Саранска) выдали следующую лемму. Выходит, не все её знают, так что напомню свой старый пост в книге лиц, в котором из неё выводится Рождественская теорема Ферма.

Лемма (обратное неравенство Коши-Буняковского-Шварца, шорт-лист IMO 1995 A2). Если a,b,c — неотрицательные целые числа и ab-c² неотрицательно, то существуют два вектора x,y с целыми координатами (одной и той же, может быть большой, размерности) такие, что a,b — квадраты их норм, а c — их скалярное произведение. Иначе говоря: если квадратный трёхчлен f(t)=at²+2ct+b неотрицателен на вещественной оси, то его можно представить как сумму квадратов линейных [аффинных, если вам так нравится - ФП] функций с целыми коэффициентами:

f(t) =sum (x_i t+y_i)²

Доказательство леммы. Предположим противное и возьмём контрпример с минимальным c. Если min(a,b,c)=c, то

f(t)=c(t+1)²+(a-c)t²+(b-c) 1²

искомое представление. Если, скажем, c>a, то возьмем трёхчлен f(t-1), то есть тройку (a, b-2c+a, c-a), по минимальности c она уже не является контрпримером, а из представления в нужном виде трёхчлена f(t-1) получается представление f(t) сдвигом буквы t на 1.

Теперь

Рождественская теорема Ферма. Если p=4k+1 простое, то p есть сумма двух квадратов целых чисел.

Доказательство. При некоторм целом c число p делит c²+1 (простое доказательство: иначе остатки от 2 до 4k-1 по модулю p разбиваются на четвёрки вида (y, - y, 1/y,-1/y)):

ap=c²+1.

Используя лемму, находим векторы x,y с x²=a, y²=p, c=xy=sum(x_i y_i). Возьмем любой индекс i, для которого y_i≠0. Обозначим x_i=X, y_i=Y. Имеем

1-(pX²+aY²-2cXY)=(a-X²)(p-Y²)-(c-XY)²⩾0

(это КБШ для векторов x, y без i-ой координаты).

Умножая на p и подставляя ap=c²+1 в левую часть, получаем
p-(pX-cY)²-Y²⩾0, но левая часть кратна p (и меньше p, так как Y≠0), поэтому она равна 0.

3 months, 3 weeks ago
fp math
4 months ago

Не то чтоб мне нравились эти задачи, но поговорить можно.

6 months, 3 weeks ago

Что-то с трансляцией в ютуб не выходит, идите в зум кто хотел смотреть

7 months ago

Ездил на Всероссийскую олимпиаду. Там дети массово повадились решать геометрию с помощью ТДИ. Я раньше думал, когда изредка встречал в работах эту аббревиатуру, что школьник мне так снисходительно говорит "ты дебил идиот". А это теорема Дезарга об инволюции. Я несколько раз узнавал, в чём она состоит, и сразу забывал, а сейчас решил, наконец, разобраться.

Интересно, что хотя Жерар Дезарг жил в XVII веке, теорема стала популярной только сейчас: когда я был школьником, никто ничего не слышал про такое.

Теорема Дезарга об инволюции говорит следующее.

Пусть L - некоторое двумерное линейное пространство в трёхмерном пространстве квадратных трёхчленов (точнее, многочленов степени не выше 2 от одной буквы). Для точки x на прямой есть (один с точностью до пропорциональности) трёхчлен из L, обнуляющийся в x. Второй корень этого трёхчлена назовем f(x). Тогда f(x) - инволюция прямой, а теорема в том, что она проективная (= дробно-линейная) .

Доказательство: в L есть линейная функция, не умаляя общности, это функция x, тогда произведение корней у всех ребят из L одинаковое по теореме Виета, поэтому f(x)=const/x.

В геометрии это обычно применяют в таком разрезе. Пусть есть 4 точки на плоскости и прямая p. Рассмотрим пучок коник, проходящих через эти 4 точки. Множество их уравнений это двумерное пространство многочленов от двух букв степени (не выше) 2. Сужая на p, получаем то самое пространство L многочленов уже от одной буквы. То есть инволюция на p, переставляющая точки пересечения p и любой коники этого пучка, проективная.

В качестве коник обычно выступают пары прямых (их есть три штуки: уже выходит нетривиальное утверждение) и (опционально) окружность.

Полезно также проективно двойственное утверждение: если дана точка P и рассматриваются коники, касающиеся 4 данных прямых, то есть проективная инволюция, меняющая местами касательные из P к таким коникам. Например, пусть ABCD - описанный четырёхугольник, тогда есть инволюция, меняющая местами пары прямых PA, PC; PB, PD; касательные из P к его вписанной окружности.

8 months, 1 week ago

Ответ: p немного больше пятисот

8 months, 2 weeks ago

Коллеги напомнили, что был день аппроксимации a=3,14 числа пи. Я больше люблю аппроксимацию b=22/7=3,1428... Эти числа a и b приближают пи с разных сторон и примерно с одинаковой точностью: их полусумма (a+b)/2=3,1414... уже гораздо лучшая аппроксимация, чем каждое из них, но всё же чуть меньше чем пи. Проверьте свою интуицию: прикиньте без компа и вычислений, при каком примерно p среднее степенное порядка p чисел a и b будет равно пи

9 months, 1 week ago

Завтра хороним Анатолия Моисеевича Вершика, моего великого учителя.

Я общался со многими умными и очень умными людьми, лауреатами и чемпионами. Способными решать дико сложные задачи. Чтобы так видеть
и чувствовать математику - никого.

В последние годы он много говорил и, определённо, ещё больше думал о смерти - при этом был полон планов, и планы как всегда были максимально амбициозные. (конечно, тут нет противоречия). Не как доказать то и это, а как должна быть устроена такая и этакая наука. Людям не с такой интуицией, как у АМ (а это так-то все мы, дорогие друзья) бывало потом удивительно, когда так она устроена и оказывалась.

Несколько вещей, которые непроизвольно воспринимаешь, учась у АМ.

Хороший вкус важнее технической силы. Внутренний интерес к задаче важнее моды. Понимание важнее, чем технически верное доказательства, пока теорема не понята вполне - надо над ней думать, даже если доказательство есть. Важнее уметь задавать вопросы, чем отвечать. Нельзя бояться нового. Вообще нельзя бояться.

Тут канал математический, а не личный, так что позволю себе привести один пример из творчества АМ. Станислав Улам поставил вопрос о размере максимальной возрастающей подпоследовательности в случайной перестановке большого числа n. Он был решён Вершиком и Керовым (1984), в двух словах так: надо сопоставить перестановке диаграмму Юнга с помощью алгоритма Робинсона - Шенстеда - Кнута, тогда максимальной возрастающей подпоследовательности соответствует её первая строка. Сколько раз получена каждая диаграмма, говорит формула крюков. Логарифм произведения крюков аппроксимируется интегралом, максимум интеграла находится стандартными методами, и так получается не только длина первой строки, но и вся предельная форма диаграммы, известная сейчас как кривая Вершика - Керова - Логана - Шеппа (задачу Улама Логан и Шепп, действовавшие независимо, при этом не решили: это более тонкий вопрос, чем предельная форма).

Таких вопросов в вероятностной и экстремальной комбинаторике можно задать и задают сколько угодно. И вообще-то АМ этой темой самой по себе не занимался. И совершенно не удивительно, только так и могло быть, что он ответил именно на тот, из которого в скорости выросла целая большая наука, со случайными матрицами, точечными процессами, специальными функциями и всем что вы можете вообразить - см. напр. пленарный доклад на ICM 2006 Ричарда Стенли или книжку Дана Ромика "The Surprising Mathematics of Longest Increasing Subsequences".

We recommend to visit

Для связи - @lehamagnat

Last updated 9 months, 3 weeks ago

Сотрудничество: @pr_malinaa

⚡️Разговорная беседа:⚡️

https://t.me/your_padshiy_angell

✨Инст:✨

https://instagram.com/your.padshiy.angel?igshid=YmMyMTA2M2Y=

Last updated 3 months, 1 week ago

Last updated 1 year, 3 months ago