Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 3 Monate her
Новые и перспективные Web3 игры с добычей токенов.
Чат: https://t.me/Crypto_Wolf_Chat
Правила чата смотрите в описании чата.
Все свои вопросы направляйте в чат или главному модератору чата: @Exudna_118
По теме сотрудничества: @Zombini
Last updated 2 Monate, 2 Wochen her
Привет! Ищу Senior Software Engineer (python) к себе в команду данных в LLM. Вилка: 7-10k eur на руки в месяц (есть поправка на локации) Локация: релокация в один из офисов (Белград, Амстердам, Лондон), либо удаленка Описание Nebius – это ai-centric cloud…
Привет!
Ищу Senior Software Engineer (python) к себе в команду данных в LLM.
Вилка: 7-10k eur на руки в месяц (есть поправка на локации)
Локация: релокация в один из офисов (Белград, Амстердам, Лондон), либо удаленка
Описание
Nebius – это ai-centric cloud (много gpu, которые сдаются в аренду). LLM команда делает эксперименты, используя часть gpu.
Наша команда данных делает эксперименты с данными, претрейном, continual preptrain. Короче мы обрабатываем очень много текстовых данных и смотрим, что улучшает модель и ее определенные способности.
Что нужно делать на этой позиции
Нужно будет развивать наш фреймворк для обработки данных. Если грубо, есть большая куча данных (в сумме – это петабайты, по отдельности до ~100TB). Нужно дизайнить и реализовывать эффективную логику обработки на нашем фреймворке поверх yt (платформа для распределенной обработки данных).
Из недавних задач:
фильтр Блума для быстрой фильтрации
топологическая сортировка и работа с графами для сортировки зависимостей в коде
затащить и подобрать оптимальные параметры для инференса энкодерных моделей (в yt есть gpu ноды для подобных задач).
Основное требование
Уметь хорошо писать код и дизайнить логику (фреймворк на питоне). Уметь в LLM и ML необязательно, но будет плюсом, а что нужно – подскажем в процессе.
Формальное описание вакансии можно посмотреть тут
Список собесов (после знакомства с hr)
1. Полчаса про опыт + несложная алго задача
2. Coding interview – реализовать класс с заданной функциональностью
3. Алго-секция
4. Систем дизайн
5. Финал
По всем вопросам + кидать резюме можно мне в @ibragim_bad
P.S. На сайте ошибка – удаленка есть
Привет!
Давно сюда не писал, решил поделиться, как у меня дела и что нового произошло!
Вот тут мое интро, чтобы узнать, что было в прошлых сериях.
Осенью того года менял работу. Прошел 40 собеседований за полтора месяца. (Воронка была такая: откликнулся на ~100 позиций -> ~15 созвон с hr (почти все через рефералов) -> 12 мест, где прошел собесы -> 8 офферов). Заметки с тех времен остались, опубликую статистики и как готовился.
Последние полгода занимаюсь llm. C ноября 23-го года начал работать в качестве лида команды данных для пре-трейна в Nebius. Мы с командой собираем и обрабатываем данные, чтобы за такое же количество компьюта получить модель лучше. Карпатый два года назад лаконично выразил мысль. Расскажу, что узнал на практике, как этот самый Large, clean, diverse data получить
Прошлой осенью закрыл гештальт. Хотел порассказывать про здоровье и технологии, а тут red barn позвали записать подкаст. Недолго думая, собрали материала на 12 выпусков и записали сезон.
После трипов по Азии в течение прошлого года (для того, чтобы удаленно работать, понравился Вьетнам, по впечатлениям, понравился Сеул), засели с девушкой в Белграде. Если кто тут, пишите, сгоняем попить кофе!
Telegram
commit history
Всем привет! Меня зовут Ибрагим. Сейчас я лид команды данных для претрейна в nebius. Сейчас я делаю весь machine learning для одного из стартапов в экосистеме TON Сделал и продолжаю делать с нуля рекомендации (коллаборативка, item2vec, ранкер), рейтинги…
Завел отдельный аккаунт в телеге, чтобы не мешали каналы, сториз и большие чаты.
В телеге много крутых личных каналов с концентрированным опытом и классными мыслями. Проблема в том, что в моменте, информация из них мне не нужна. И даже несмотря на наличие вкладок и архива, непрочитанные посты из каналов лежат мертвым грузом. А теперь еще есть и сториз, которые висят в топе.
Месяца три назад завел еще один аккаунт в тг чисто для чтения каналов. Так, они не мешают в личном, а переключение между аккаунтами в тг удобное – вечером/утром захожу сразу полистать посты пачкой.
Рецепт, как перекинуть читаемые каналы на новый аккаунт.
1. Берем новую симку, либо выпускаем виртуальный номер у своего оператора. Есть еще сервисы вроде sms-activate, но там потом аккаунт перейдет новому юзеру, поэтому не советую.
2. Регаем новый аккаунт в тг на этот номер.
3. Создаем папку на личном аккаунте (настройки -> папки с чатами-> создать папку) и закидываем каналы, которые писали в последние пару недель.
4. Делимся этой папкой и кидаем в сообщениях своему второму аккаунту. Присоединяемся во все разом.
5. Удаляем папку и разом выходим из всех каналов на личном аккаунте. Главное убедиться, что присоединились на втором.
Как быстро и почти безболезненно вкатиться на Go вдобавок к питону
Если бы встретил такой пост год назад – сэкономил бы N часов дебаггинга граблей, которые сам же и раскидал. Сейчас, Time screen говорит, что за неделю на go пишу столько же времени, сколько и на питоне (не ноль, если что).
На го писал код для таких задач:
+ фичи в монолитный бэк с основной логикой (на go получается быстрый и легкий веб сервер),
+ в отдельный сервис для процессинга признаков и статистик
+ блендер, которые собирает рекомендации генераторов, комбинирует их в финале и делает пост-ранкинг.
Как начал писать код на го.
1. Пошел в документацию и прошел короткий go dev tour. Там на примерах познакомился с базовым синтаксисом.
2. Начал писать несложный код и посматривал в примеры вот тут и в документацию, когда писал код. Например, в gorm, который отвечает за работу с базой.
3. Пролистал effective go, но там часть инфы давно не обновлялась.
4. Здорово помогал copilot, который позволял не запоминая весь синтаксис, писать код целыми блоками.
Если бы вкатывался сейчас, то прошел бы этот курс Microsoft
?Возможные ошибки при переходе с питона.
Когда после питона начнете писать на го, есть соблазн ожидать похожего поведения, когда это не так.
Вот, 3 примера кода, которые на питоне и го выглядят одинаково, но ведут себя по разному. Взял примеры с array (списки на питоне) и map (словари), так как чаще всего используются эти структуры данных.
Написал примеры кода на го в playground, а в комментариях указал, что бы получилось в питоне. Поэтому советую открыть ссылку с кодом в соседней вкладке и смотреть с комментариями отсюда.
1. Слайсы в питоне – это копия участка исходного списка. Поэтому изменяя его, на исходный список вы не влияете. На го же, слайс – это участок исходного списка, поэтому если хотите получить его копию, нужно копировать явным образом.
2. В го по умолчанию переменные передаются в метод “pass by value” (в функцию передается копия значения переменной), а в питоне “pass by referenece” (передается указатель на участок памяти со значением). Это значит, что в питоне вы будете менять список, который передали в функцию, а на го будете работать с копией. Однако, на го тоже можно сделать “pass by referenece”, передав адрес переменной. Посмотрите в код, там понятнее.
3. Переменные в го инициализируются нулевыми значениями. А если вы попробуете получить элемент, которого нет, из мапы – получите нулевое значение этого типа (считайте, что map на го – это defaultdict из питона). Поэтому map в го возвращает еще boolean значение есть ли такой ключ в словаре. Вот хорошая статья о том, как устроен hashmap на го.
Еще немного ссылок.
+ Большой список ссылок по го на реддите.
+ Слак по Go на 100к людей, где даже могут отревьюить код. Называется, кстати, gophers - почти как llm от deepmind.
P.S. Поделитесь пожалуйста лекциями или статьями по устройству питона и го? Про устройство GC, GIL, scheduler в языках. И про разные штуки типа convoy effect. Тут, кстати, хорошо расписано про GIL и convoy effect на питоне.
4 месяца назад пересел с pandas на polars.
Короткий итог: с polars пайплайн на старом наборе признаков стал быстрее раз в 6, а пик утилизации памяти меньше в 3 раза. Правда, я не сравнивал с Pandas 2.0, где завезли поддержку arrow.
Pandas – библиотека для анализа данных и работы с табличными данными.
Polars – более молодой аналог pandas для тех же целей
Pandas я использовал для EDA (посмотреть по быстрому какие-то статистики, сделать аналитику, которую муторно считать запросами в кликхаусе или бд) и для того, чтобы считать фичи в фоне на паре табличек. И если с EDA все норм, то считать фичи было не очень приятно.
Пайплайн для фичей выглядит так: подтянуть пару таблиц из MariaDB -> поджойнить/сгруппировать и собрать датафрейм -> посчитать разные счетчики, аггрегации, признаки (например, отношения лайков к просмотрам юзера у конкретного автора за последние 10 суток).
Количество строк в итоговом датафрейме 1-10 миллионов. Потом это все используется, чтобы обучать разные бустинги. Основной нюанс, операции нужно считать rolling с определенным окном. То есть на момент каждого события(каждой строки) нужно взять предыдущие события этой группы (например, юзера) за 1/7/30/..дней и посчитать среднее или другую статистику.
Почему polars оказался экономнее и быстрее:
+ Polars написан на Rust и оптимизирован под параллельные вычисления (когда есть такая возможность).
+ Polars использует arrow. Это такой формат хранения данных в памяти (RAM), который позволяет хранить объект не в одном участке памяти, а кусками в нескольких. А еще arrow хранит данные в колоночном формате.
+ Polars использует Lazy evaluations: (это когда операция выполняется в момент, когда нужен её результат, а не когда она объявлена (eager evaluation). Поэтому большие пайплайны операций может выполнить оптимальнее.
+ Streaming evaluation. Если вдруг датасет не помещается в оперативку, можно стримить кусками и обрабатывать их.
Нюансы и советы:
1. Синтаксис polars не сильно отличается от pandas, за вечер-два можно освоиться.
2. Если вдруг лень смотреть, как это пишется на polars, всегда можно вызвать метод .to_pandas().
3. Для коммуникаций с бд в polars использует библиотеку connector-x. Из плюсов – быстрая, из минусов нет готовой версии для докера под m1 и нельзя задавать схему датафрейма, когда читаешь из базы
4. Для хранения данных на диске теперь использую только parquet. (Быстрее i/o операции и файл легче, чем csv)
Ссылки
1. Если хотите попробовать polars, советую полистать официальный гайд
2. Всякие тесты и сравнение с другими либами от @train_test_split
3. Еще нашел такое сравнение polars с Pandas 2.0 (где используется arrow)
Эвристики для пост-фильтрации.После ранжирования применяем эвристики. Стандартные штуки вроде фильтра скрытых вами авторов и соблюдение баланса подписок/неподписок. Интересно, что есть Social Proof – не показывать Out-of-Network твиты с которыми не взаимодействовал никто из ваших подписок.
Еще странно, что для повышения diversity есть только “убрать подряд идущие посты одного автора”. Неужели они по эмбеддингам/топикам не повышают разнообразие в финальном списке?
В дальнейшем думаю чуть более подробно посмотреть на модули тяжелого ранкера и SimClusters/TwinHW. И на модуль Trust and safety Правда самого интересного (анти-бот и анти-спам) там нет и не будет, чтобы не абьюзили.
Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 3 Monate her
Новые и перспективные Web3 игры с добычей токенов.
Чат: https://t.me/Crypto_Wolf_Chat
Правила чата смотрите в описании чата.
Все свои вопросы направляйте в чат или главному модератору чата: @Exudna_118
По теме сотрудничества: @Zombini
Last updated 2 Monate, 2 Wochen her