Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.
Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support
Last updated 2 weeks, 2 days ago
Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 1 month ago
Наконец-то дочитал Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights by Joanne Rodrigues. Много страниц, мелкий шрифт, очень плотный по содержанию текст.
Акадмический бэкграунд автора (магистратуры LSE и Беркли по математике, политологии и демографии) просматривается с самого начала. От методологии до кода на R, с кучей отступлений и инфомационных справок. В конце концов, когда еще в книге по аналитике прочитаешь про утилитаризм Бентама.
Книга состоит из пяти частей. Первая — методологическая. Вторая посвящена базовым статистическим методам (распределения, создание метрик, введение в A/B-тесты). Третья часть о предиктивных моделях (регрессии, деревья решений, SVM). Четвертая — о Casual inference методах (difference-in-difference, разрывный регрессионный дизайн, матчинг, аплифт-моделирование). Пятая часть про реализацию большей части методов на R.
Первая часть самая интересная и самая важная. В ней всего три главы. В первой главе проговаривается идея, что поведение пользователей сложное, у них разные мотивы, и мы никогда не обладаем всей полнотой информации. И для того, чтобы как-то начать предсказывать и менять пользователей, надо создать теорию, почему они ведут себя тем образом, который мы наблюдаем. Вторая глава как раз посвящена тому, как создавать подобные теории — какие критерии хорошей теории, как создавать метрики и формулировать гипотезы для проверки теории. И третья глава — как на основе теории менять поведение пользователей. Как понять, что мы действительно что-то изменили, как измерить. Даже предлагается несколько подходов, как обеспечивать изменения, в частности описывается Fogg Behavior Model.
Прочие части в целом неплохи, но какого-то уникального знания там меньше. Конечно, чувствуется политолого-демографический бэкграунд в описании casual inference подхода, да и в целом вся книга так или иначе фокусируется на этой парадигме (условно, “когда реальность очень неоднородна, квазиэксперименты лучше аб-тестов”). А код на R… приятно, что на R, но как и у многих академиков, как будто из 00-х, сильно отстал от реальности.
Из любопытного — в отличие от многих других книг по продуктовой аналитике, тут нет стандартного перечисления бизнес-метрик типа DAU или ARPU. Акцент сделан на поведении, концептуализации и измерении.
В общем, мне понравилось, несмотря на тяжеловесность текста. Я сам когда-то из академии и поэтому идея, что надо понять поведение пользователей и это будет ключом к изменению, мне понятна и очень близка.
Понравилась вот эта часть статьи Криса:
*"Ответ на вопрос типа « Как влияет ___ на ___? » обычно требует больше усилий, чем оно того стоит . Забудьте о редком исключении.
→ Вместо этого : сосредоточьтесь на хорошей оценке в каждом блоке — оценке опыта пользователей, оценке поведения, оценке качества продукта, оценке цен, оценке конкурентов и т. д. — и не пытайтесь связать их вместе (что, даже если бы вы это сделали, в любом случае потребуется хорошая оценка внутри каждого блока; на самом деле, потребуется отличная оценка, чтобы справиться с объединенной дисперсией и помехами.)"*Зачастую, действительно хочется упороться в анализ причинно-следственных связей и понять, а что конкретно влияет на нужную тебе метрику. Например я работаю с cr1, можно много ковыряться в событиях и искать корреляции и пытаться обосновать их причинность.
Но как правило более эффективно идти от понимания системы и анализа отдельных блоков. Например на cr1 влияют:
- ценность оффера для сегментов, которые приходят на сайт
- этап пути клиента на котором находится пользователь
- доверие к продукту и бренду
- удобство и понятность интерфейса и отсутствие барьеров в процессе заказа
- позиционирование и цены конкурентов
- сезонность
- факторы принятие решения по сегментам.
Построить модель влияния всех этих факторов на cr1 и оценить вклад каждого параметра, кажется практически не возможно, а также всегда могут быть скрытые переменные.
Но можно провести исследование в каждом из блоков и найти гипотезы по улучшению в каждом из блоков и проверить их через АБ, такой путь более практичный, более понятный и приносит конкретный результат в виде роста метрик
Хорошо сказал
Речесч подборка от Юры Ветрова. Обратите внимание на статью Криса Чапмана - жиза.
Скрытая суть
В «Криптономиконе» Стивенсона герои все окружающее описывают математически, от чего видят скрытую от многих суть явлений. Слушал этот роман и попробовал для себя этот формат размышления с ИИ: когда изучаю какую-то концепцию (философскую, социальную, экономическую) или явление, то смотрю на нее через математический язык описания.
За это отвечает очень простой промпт:
Представь что эту концепцию надо описать математически \- как математический закон или формулу. Опиши с помощью математики, формулы, математической структуры: [концепция для описания]
Его можно применять почти ко всему, что вы изучаете, чтобы увидеть математические законы, заложенные в явлении.
Несколько примеров применимости подхода (все просим описать по данному выше промпту):
Для более высокого качества надо попросить модель сначала расшифровать концепцию на естественном языке, чтобы насытить диалог контекстом, и только потом просить описать ее математически - качество будет лучше.
В комментариях еще промпты для продолжения диалога и примеры выдачи.
Пока болтался в отпуске, попалась на глаза статья от X5 Tech про разметку событий. Какой трекер они выбрали, как называть события, какая логика организации параметров. То, что я называю “дизайном событий” и что вполне может занимать до трети рабочего времени аналитика на ранних этапах проекта (потом, конечно, существенно меньше).
Статья в целом симпатичная, сам буквально неделю назад думал над правилами названия событий и в целом над структурированием своей документации. В геймдеве набор сущностей, действий и процессов ощутимо сложнее, кажется, чем приведенные. Тем не менее подходы и идеи все равно весьма схожи.
Но самое полезное в статье, на самом деле — не очень заметная ссылка на полную документацию по разметке событий. Она намного полнее и понятнее, чем статья, содержит в себе определения основных понятий, правила создания и ведения разметки, а также описание процессов разметки.
Очень хочется свою документацию довести до схожего вида, ведь примерно половина уже есть. Мечты-мечты.
Потихоньку пишу свою документацию по созданию "информационной модели продукта" и здорово посмотреть на опыт коллег по цеху.
В целом, идея выкладывать в паблик подобные методики очень хорошая...
Так, Антон, сфокусируйся - сначала допиши для внутреннего потребления, а потом думай как опенсорсить лучшие практики.
Словарик
Антрвольт, антревольт (через фр. entrevolte от итал. antervolta — «перед дугой») — часть плоскости стены между архивольтом (обрамлением, дугой) арки и расположенным над ней карнизом либо между архивольтами соседних арок в аркаде, хотя в английском утвердился термин - spandrel
В биологии антревольтами называют особенности устройства организма, которые не являются ценными для приспособленности сами по себе, а являются неизбежным результатом устройства других частей.
Итак, некая сущность, которая является неизбежным результатом, а не появляется как заранее спланированный результат. В биологии — это подбородок, в архитектуре — это пространство между стеной и аркой. Фактически, пространство следующее изгибам арки. Этот термин был придуман палеонтологом Стивеном Джеем Гулдом и популяционным генетиком Ричардом Левонтином в их статье «Спандрелы Сан-Марко и панглоссианская парадигма: критика адаптационистской программы»
Гораздо интереснее, что сам Ноам Хомский вроде бы полагал в качестве такой перемычки-антревольта сам язык, его рекурсию - как сущность, которая возникла как побочный продукт. Есть авторы, которые видят и объясняют антревольтом нашу религиозную веру, как побочный продукт эволюции
Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.
Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support
Last updated 2 weeks, 2 days ago
Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 1 month ago