Artificial stupidity

Description
Пишу об анализе данных и Data Science (и не только о них).
Связь с автором @gofat
Advertising
We recommend to visit

?Телеграмдаги Энг сўнгги хит тароналар факат бизда

?? - УЗ
?? - РУ
?? - ТР
?? - Ус
?? - АЗ
?? - ТЖ
?? - КЗ
?? - КР

Creator : @kiinyaz

Last updated 1 year ago

Бесплатные игры и программы для Android

❗️Сотрудничество (ads), DMCA, пожелания: t.me/EasyAPKBot

💵Реклама: https://telega.in/c/EasyAPK

🔴 Чат: @ChatEasyAPK

Все публикуется в ознакомительных целях. Вы скачиваете программы на свой страх и риск

Last updated 10 months ago

Главное про технологии, интернет-культуру, тренды и нейросети.

По рекламе: @Alivian

Биржа: https://telega.in/c/technomotel

Last updated 5 days, 23 hours ago

3 months, 3 weeks ago

#LLM

Галлюцинации в LLM. Часть 2

Уфф. Оказалось, что текст не влезает в обычный объем поста. Поэтому наслаждаемся статьей на telegraph'е. Надеюсь, изложил понятно.

https://telegra.ph/Istochniki-gallyucinacij-v-LLM-07-26

В следующей части мы рассмотрим бенчмарки для галлюцинаций и примеры метрик.

Telegraph

Источники галлюцинаций в LLM

С тем, что такое галлюцинации, какие бывают типы галлюцинаций и почему это плохо, мы разобрались. Давайте теперь перейдем к тому, откуда же получаются галлюцинаций, то есть, к причинам галлюцинирования LLM. Но для начала вспомним, что процесс обучения и работы…

3 months, 4 weeks ago

#LLM

Сегодня мы начнем говорить про галлюцинации в LLM. Т.к. тема весьма обширная, то будет целая серия постов.

Галлюцинации в LLM. Часть 1

Давайте начинать разбираться в этой обширной, но интересной теме.

Что же, собственно, это за галлюцинации? И почему они могут помешать нашей работе с LLM?

Если мы рассматриваем это явление с точки зрения психологии, то “галлюцинации” – это разнообразные аномалии восприятия окружающей действительности, возникающие без внешнего раздражителя. То есть, когда наш мозг видит, слышит или чувствует то, чего в реальном мире сейчас нет.

Но если мы смотрим на это понятие с точки зрения обработки естественных языков (NLP, Natural Language Processing), то “галлюцинации” – это аномалии генерации, при которых сгенерированный результат кажется бессмысленным или не соответствуют входным данным. Получается, что в этом случае, речь скорее о получаемых результатах. И это уже отличные от привычного понимания “галлюцинации”.  

Если упрощать, то при галлюцинациях LLM начинает "выдумывать" что-то, чего нет в реальном мире, либо выдавать результаты, не соответствующие запросу.

А какие типы галлюцинаций бывают?

В весьма годном обзоре по галлюцинациям "A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions", предлагают следующую типизацию галлюцинаций:

Фактические галлюцинации.

Здесь все просто. К данному типу относятся случаи, при которых модель генерирует ответы, противоречащие общеизвестными фактам или фабрикует какие-либо факты.

Например, модель на запрос “Кому принадлежит первый орден Октябрьской революции?” ответит “Ленин”. А в реальности этот орден принадлежит городу Ленинград. 

Или придумать этимологию слова “шпулевина”, которого попросту нет в русском языке.

Галлюцинации следования запросу (или галлюцинации верности).

К этому типу относятся случаи, когда игнорирует часть (или вовсе всю) входную инструкцию, игнорирует контекст запроса или имеет логические несоответствия и противоречия в ответе.

Частый пример: при длинном запросе модель может “потерять” часть входной информации из запроса и по этой причине выдать частично некорректный ответ.

Еще один пример. Если мы спросим у модели логическую задачу “У вас есть 50 мотоциклов, у каждого из которых запах хода на 100 км. Сколько вы можете проехать на этих мотоциклах?”, модель просто умножит 100 * 50 и будет считать это верным ответом. В реальности, конечно же, этот ответ неверен.

И почему же это проблема?

В принципе, по примерам уже можно догадаться, что нежелательное поведение с "выдумыванием" вряд ли понравится пользователям.

Представьте, что вместо реальных ссылок на нужное видео, LLM постоянно (или хотя бы достаточно часто) будет выдавать ссылку вот сюда. Польза от такой системы, мягко говоря, получится не очень высокой.

А если представить, что LLM будет использоваться в какой-то бизнес-системе, или того хуже - в медицине (и подобных чувствительных областях). Тогда такое поведение может вовсе похоронить всю систему (даже если оно будет проявляться не так часто).

Пользователи станут с недоверием относиться к нашей системе. А нам это надо? Поэтому с галлюцинациями лучше нещадно бороться (впрочем, если вам важна креативность, то нужно бороться не со всеми типами галлюцинаций).

А в следующем посте поговорим про причины галлюцинаций. Stay tuned!

4 months ago

Сегодня буду на TurboML от Т-банка. Если у кого есть желание пообщаться - пишите в личку, пересечемся там

5 months ago

​​#llm

Используем LLM для разметки (часть 1).

А так вообще можно? Оказывается, что можно. Но только с осторожностью.

Итак, давайте разбираться. Думаю, что в один пост все не влезет, потому по этой теме будет несколько постов.

Сначала вспомним, что такое разметка данных. Разметка данных (Data labeling) (иногда называемая аннотированием данных (data annotation)) — это процесс добавления меток или тэгов в сырые данные, чтобы показать модели машинного обучения целевые атрибуты (ответы), которые она должна предсказывать.

Соответственно, разметкой данных обычно занимаются отдельные компании по договору или люди на краудсорсинговых площадках (Толока, Mechanical Turk). В случае, если данных немного, в команде отряжают кого-то из коллег размечать данные (ну или используют кого-то из представителей заказчиков, например, на одной из прошлых моих работ, мы использовали модераторов для разметки данных по антифроду).

Ну и, конечно же, этот процесс не так прост, каким кажется. Вот несколько сложностей, которые могут возникнуть в этом процессе:
1. Большие объемы данных. Если у нас много задач, которым требуется разметка, то нам придется потратиться на разметку. Увы, но производительность там растет примерно линейно - больше разметчиков дают больший объем разметки;
2. Специализация удорожает разметку. Не для всякой задачи подойдет случайно выбранный человек с краудсорсинговой платформы. Например, в случае работы с медицинскими данными, обычный человек попросту не сможет правильно проинтерпретировать снимок или результаты анализов;
3. Данные не статичны. Мир постоянно меняется. Поэтому далеко не факт, что единожды собранный набор данных будет давать то же качество работы модели в будущем. Потому процесс разметки обычно не останавливается (нам желательно иметь приток новых меток со временем);
4. Согласованность данных. Если разметкой какого-то набора или экземпляра данных занимается только один человек, то в данные могут попасть его ошибки или заблуждения. Поэтому, часто используется перекрестная разметка (когда несколько человек проставляют метку, а результат получается консенсусным решением).

Соответственно, разметка может стать весьма затратным мероприятием. И вполне себе может стоить тысячи и десятки тысяч долларов (тут, конечно, все зависит от задачи и объема). Да и скорость разметки все еще ограничена скоростью человека (или группы людей), который ее проводит.

И тут на сцену выходит LLM. Какие же плюсы могут быть от использования такого рода моделей в разметке данных:
1. Ниже стоимость разметки. Некоторые авторы приводят разницу в разы, другие - на порядок. Но даже разница в 5-7 раз - это весьма существенная экономия;
2. Выше скорость разметки. Здесь мы не ограничены скоростью человека, потому вполне можем ускорить разметку на порядок (см. изображение к посту);
3. Адаптивность. Изменением промпта мы можем менять задачу для разметки. При этом, LLM показали свою эффективность в достаточно большом наборе задач (от машинного перевода до выделения именованных сущностей). Соответственно, переход от задачи к задаче должен быть достаточно прост.

На этом интригующем моменте давайте остановимся. И продолжим уже тем, как мы можем применить LLM к процессу разметки, какие есть инструменты и особенности работы с LLM-разметчиком.

[​​](https://telegra.ph/file/bf8dcabee674b7ba4ecba.png)[#llm](?q=%23llm)
5 months, 1 week ago
Меня ~~закэнселили~~ забанили на стендап шоу.

Меня ~~закэнселили~~ забанили на стендап шоу.

Две недели занимаюсь стендапом, а уже драма!

Вчера выступил в четвертый раз. Прошло неплохо. После шоу я уже вызвал такси, подхожу попрощаться с ведущим и парой комиков. Одна из комиков посмотрела на меня и говорит ведущему: "Ой, а ему не заплатили." Я такой: "You guys getting paid?"

Ведущий говорит: "Everyone gets paid, but YOU are not." Интонация была какая-то странная, будто высокомерная, и я заглотил наживку, спросил почему. Он объяснил, что они не платят новым комикам, тем кто выступает меньше трех месяцев, потому что потом они пропадают и больше не приходят, "don't wanna be part of this scene." Я не понял логической связи. Обозначил, что мне все равно на эти деньги, но сказал, что это какая-то странная схема: комики ведь делают твое шоу, посетители приносят деньги, и причём тут вообще пропадают эти комики позже или нет? Он выдал мне тираду о том, что он в комедии шесть лет, и почему они должны платить опытным комикам так же, как мне? Стало уже совсем неловко, я сказал, что "I can see the reasoning, not cool, but I am going", а он не пожал мне руку и говорит "Get out, you are not getting on this show." Я развернулся и пошел в свое такси, благо моя самооценка не держится на том, что я N лет в комедии (пока что).

Весь разговор длился минуты полторы, поэтому я вообще не уловил, что это было. Нормально же общались, как говорится. Позже, подумав, понял, что его задело: он решил, что я учу его как делать шоу. Хотя я ведь просто пытался понять, как это работает и почему, а потом сказал, что думаю.

Возможно тут есть нечто культурное: в русском эгалитарном обществе высказывать свое мнение это священное право, а при обсуждении того, что справедливо, а что нет, вообще нельзя пройти мимо.

Очень хотелось объяснить человеку на языке тела, что общаться с людьми через "Get out" неуважительно. Но подостыл и написал ему в вотсап, что не хотел обидеть (что правда) и "no hard feelings." Больше всего беспокоило, что он пойдет рассказывать плохие вещи в тесной тусовочке, и мне отрубят доступ к другим площадкам, после чего карьера великого ~~рейнджера~~ комика закончится не начавшись. Поэтому хотелось по крайней мере не дать конфликту разгораться. Он выдал мне в ответ тираду, что мол, сначала поживи в комедии с моё, а потом делись своим мнением. Чтож, окей.

Вот он какой, суровый шоу-бизнес, в котором все работает совсем не так, как я привык.

Вынес из этого важный урок коммуникации: не лезь куда не надо и считывай комнату.

5 months, 1 week ago

Ух, какая офигенная история

5 months, 1 week ago

#education

Что я вынес для себя после преподавания на курсе по анализу данных во ВШЭ на совместной магистерской программе с X5?

  1. Я сильно лучше начал понимать своих преподов (особенно из индустрии). У тебя и так не очень много времени, а тут еще нужно делать лекции, семинары, смотреть домашки, консультировать (если есть проекты или сложные домашки). И на это уже начинает не хватать времени;
  2. Подготовка хороших материалов занимаем очень много времени (если делать хорошо). И не только создание материалов, а потом еще их адаптация по итогам обратной связи от коллег и студантов;
  3. У нецелевых курсов меньше внимания студентов. И это, в целом, логично (программа все же про менеджмент). Я тоже в свое время не особо обращал внимания на философию или культурологию, когда учился на математика. Но теперь понимаю преподавателей этих дисциплин ;)
  4. Есть вещи, которые определенно пойдут не так. Что-то, что ты рассчитывал, как достаточно быстрое задание, может занять сильно больше времени. Какие-то темы, которые ты считал более интересными, не будут вызывать особого ажиотажа. А те, что ты считал проходными, наоброт, будут более интересны;
  5. Я весьма неплохой лектор. По крайней мере, особых жалоб не было, народ слушал. Да и мне самому нравится болтать на эту тему (иначе я бы столько докладов на разных конференциях не делал бы).

А что по итогу?

Было прикольно, но готовить курс лучше, если у тебя побольше свободного времени. Делиться знаниями - круто, но это если есть ресурс.

В следующем году, вероятно, я тоже прочитаю сколько-то лекций на курсе. Но вряд ли столько же, как в прошлом году.

P.S. Кстати, скоро начнется набор на новый год этой программы. Раз уж решил пост про это написать, то можно и упомянуть.

5 months, 1 week ago
Это лучший роадмап по Deep Learning, …

Это лучший роадмап по Deep Learning, который вы когда-либо видели. Лучше сохранить

6 months, 1 week ago

Коллеги постарались и сделали по мотивам моего выступления статью на хабре.

Поддержите усилия ребят вашими лайками!

https://habr.com/ru/companies/X5Tech/articles/814579/

Хабр

Бутстрап временных рядов

Всем привет! Как и во многих других компаниях, в X5 существует огромное количество данных, зависящих от времени. Такие данные принято называть временными рядами (time-series). Это могут быть данные о...

Коллеги постарались и сделали по мотивам моего выступления статью на хабре.
7 months, 3 weeks ago

#conference

И снова о конференциях.

В мае (21–22 мая) я буду выступать с докладом о галлюцинациях в LLM: что это, как понять, что модель галлюцинирует, как нам с этим работать.

Помимо моего доклада, будет еще много интересных выступлений. В общем, будет на что посмотреть.

Конференция пройдет в онлайн формате (кайф, можно пижаму не снимать).

Подробности, расписание и прочее тут: https://imlconf.com

We recommend to visit

?Телеграмдаги Энг сўнгги хит тароналар факат бизда

?? - УЗ
?? - РУ
?? - ТР
?? - Ус
?? - АЗ
?? - ТЖ
?? - КЗ
?? - КР

Creator : @kiinyaz

Last updated 1 year ago

Бесплатные игры и программы для Android

❗️Сотрудничество (ads), DMCA, пожелания: t.me/EasyAPKBot

💵Реклама: https://telega.in/c/EasyAPK

🔴 Чат: @ChatEasyAPK

Все публикуется в ознакомительных целях. Вы скачиваете программы на свой страх и риск

Last updated 10 months ago

Главное про технологии, интернет-культуру, тренды и нейросети.

По рекламе: @Alivian

Биржа: https://telega.in/c/technomotel

Last updated 5 days, 23 hours ago