Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.
Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support
Last updated 2 weeks, 2 days ago
Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 1 month ago
Откройте для себя новое в Десятилетие науки!
По всей стране реализуются тысячи тематических мероприятий, направленных на развитие и популяризацию науки: от новых конкурсов и олимпиад до проектов научного волонтерства
и запуска новых маршрутов научно-популярного туризма.
Присоединяйтесь к сообществу «наука.рф», чтобы найти ответы на самые захватывающие вопросы, погрузиться в мир научных открытий и получить поддержку на каждом этапе вашей научной карьеры!
И, конечно, подписывайтесь на регулярную рассылку сайта Десятилетия науки и технологий «наука.рф», чтобы расти и развиваться в профессиональной среде, быть в курсе новостей о научных достижениях и открытиях.
Поздравляем А. Ф. Акбулатова с получение премии Губернатора Московской области для молодых ученых!!! Желаем Азату дальнейших больших успехов! https://mii.mosreg.ru/dokumenty/innovacii/premiya-gubernatora-moskovskoy-oblasti-v-sfer/rasporyazenie-gubernatora-moskovskoi-oblasti-ot-29102024-575-rg-o-prisuzdenii-ezegodnyx-premii-gubernatora-moskovskoi-oblasti-v-sferax-nauki-texnologii-texniki-i-innovacii-dlya-molodyx-ucenyx-i-specialistov-v-2024-godu
Аналог известного красителя помог создать новые магнитно-активные соединения
Ученые ФИЦ ПХФ и МХ РАН вместе с коллегами из других институтов синтезировали магнитно-активные соединения на основе металлопорфиринов — синтетических молекул, природные аналоги которых обеспечивают фотосинтез растений и перенос кислорода в крови у животных и человека. При соединении металлопорфиринов с органическими красителями, среди которых был синтетический аналог индиго, авторы получили серию координационных комплексов с разным магнитным поведением. Благодаря этому потенциально их можно будет использовать при разработке высокоэффективных, экологичных магнитов и магнитных переключателей в электронных устройствах. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Inorganic Chemistry.
В основе гемоглобина, растительного пигмента хлорофилла, а также ряда ферментов лежат металлопорфирины. Это природные комплексы органических азотсодержащих соединений с металлами. Их синтетические аналоги используются при создании катализаторов, оптических материалов, лекарств и солнечных элементов. Такое многообразие применений объясняется тем, что химические и физические (в частности магнитные и оптические) свойства металлопорфиринов можно «настраивать», меняя металлы в их составе и заместители на периферии органической части комплекса. Тем не менее, ученые ищут новые способы модификации этих молекул, позволяющие как тонко «настраивать» свойства соединений, так и получать комплексы с принципиально новыми характеристиками, потенциально полезные для химии, медицины и техники.
Ранее исследователи из Федерального исследовательского центра проблем химической физики и медицинской химии РАН (Черноголовка) с коллегами синтезировали комплексы на основе двух «сшитых» между собой порфиринов марганца. В качестве «мостиков» для сшивки авторы использовали магнитно-активные органические красители — молекулы, содержащие неспаренные электроны, способные усиливать внешнее магнитное поле и по-разному взаимодействовать между собой.
В новой работе, опираясь на такой подход, химики получили новые магнитно-активные соединения. В этот раз авторы также использовали металлопорфирины с марганцем, но металлы при этом имели разную степень окисления и, соответственно, разную электронную структуру. Один атом имел четыре неспаренных электрона, а другой — пять. В качестве мостика, связывающего два металлопорфирина между собой, исследователи использовали тиоиндиго — синтетический доступный краситель, по структуре похожий на индиго — природное вещество, которое в Индии применяли еще тысячелетия назад для окрашивания тканей. В комплексах марганца молекула тиоиндиго также содержала один неспаренный электрон и была магнитно-активна. Авторы предположили, что «сборка» комплексов из нескольких магнитно-активных «блоков» может повлиять на магнитные свойства конечного соединения.
Эксперименты показали, что при охлаждении до температуры жидкого гелия (-268,9°С) на первый взгляд очень похожие между собой комплексы марганца — они отличались всего лишь поворотом молекулы тиоиндиго относительно порфиринов — ведут себя совершенно по-разному. В одном из комплексов, когда молекулы расположены под углом около 35°, наблюдалось «стандартное» явление, когда неспаренные электроны выстраиваются антипараллельно и «подавляют» друг друга. В комплексе, где угол между молекулами составлял 90°, ситуация была интереснее: неспаренные электроны выстраивались в одном направлении и увеличивали магнитный отклик соединения.
Сегодня - 222 года со дня рождения одного из основателей термохимии, крайне важной для химической физики.
«Наша область – бурно развивающаяся и требующая новых идей, новых людей и новых коллабораций, поэтому такие обзоры, одновременно показывающие научно-технологические принципы работы топливных элементов и ситуацию на переднем крае науки крайне важны», - резюмирует цель этой работы Алексей Левченко.
Исследователи обобщили данные о водородных топливных элементах
Ученые из ФИЦ Проблем химической физики и медицинской химии РАН в Черноголовке изучили взаимосвязь процессов, материалов и конструктивных решений на эффективность работы водородно-воздушных топливных элементов с твердоплимерной мембраной. Новый обзор, который охватывает более 400 работ, заполняет нишу между слишком общими работами и специализирующимися на конкретной проблеме. Работа, которая может стать «точкой входа» для ученых, собирающихся заниматься данной тематикой, удостоилась обложки в самом авторитетном российском научном журнале вообще: «Успехи химии» (IF =7,6).
Водородные топливные элементы – химические источники тока, напрямую преобразующие химическую энергию реакции окисления водорода в электрический ток без горения – были изобретены еще в 1839 году, однако только в XXI веке современные материалы и технологии позволили им получить массовое применение. В настоящее время активные разработки в области топливных элементов уже позволяют им конкурировать с двигателями внутреннего сгорания и литий-ионными аккумуляторами в ряде областей техники, но для того, чтобы расширить их сферу применения нужно существенно улучшить их характеристики.
«Наш обзор заполняет нишу в тематике топливных элементов между существующими обзорами слишком общего характера и специализированные на конкретной проблеме. В нем мы последовательно рассматриваем все основные компоненты топливных элементов – протоннообменные мембраны, каталитические и газодиффузионные слои, биполярные пластины, системы охлаждения, а также факторы, которые влияют на мощность топливных элементов.
Опыт, накопленный в нашем Центре – как в фундаментальных разработках, так и в практической плоскости – создании топливных элементов с воздушным охлаждением малой мощности и применению их в беспилотных летательных аппаратах и системах накопления энергии, позволил нам рассмотреть огромный объем литературы в 428 наименований именно с практической точки зрения и сформировать общее представление как об актуальном уровне разработок в этой области, так и о перспективах их применения и дальнейшего развития», - говорит один из авторов работы, руководитель Центра компетенций «Новые и мобильные источники энергии» ФИЦ ПХФ и МХ РАН, заведующий лабораторией твердотельных электрохимических систем ФИЦ ПХФ и МХ РАН Алексей Левченко.
Авторы обращают внимание, что на эффективность работы топливного элемента влияет четыре параметра: проводимость компонентов (протоннобменной мембраны, каталитических слоев), скорость электрохимических реакций на электродах, эффективность разделения газовых пространств анода и катода и эффективность подвода компонентов и отвода продуктов реакции, при этом каждый из этих параметров определяется свойствами нескольких компонентов топливного элемента – и, наоборот, свойства одного материала могут влиять на несколько характеристик. Так, например, чем тоньше мембрана, тем меньше потери за счет сопротивления в топливном элементе, но при этом увеличиваются другие потери – и, соответственно, для каждого конструктива топливного элемента существует оптимальная толщина этого ключевого компонента.
При этом в современном мире топливных элементов существует два основных тренда. Часть групп работают на краткосрочную перспективу и занимаются оптимизацией существующих разработок топливных элементов – увеличением стабильности катализаторов и стойкости их к отравлению, улучшением характеристик протоннообменных мембран и каталитических слоев, оптимизацией геометрии топливного элемента и тому подобное. Часть же работает на долгосрочную перспективу и ищет принципиально новые решения – бесплатиновые катализаторы (в том числе – биокаталитические), новые типы ион-проводящих материалов, с акцентом на анион-проводящие, которые позволяют использовать эти бесплатиновые катализаторы как на катоде, так и на аноде и так далее.
Architec.Ton is a ecosystem on the TON chain with non-custodial wallet, swap, apps catalog and launchpad.
Main app: @architec_ton_bot
Our Chat: @architec_ton
EU Channel: @architecton_eu
Twitter: x.com/architec_ton
Support: @architecton_support
Last updated 2 weeks, 2 days ago
Канал для поиска исполнителей для разных задач и организации мини конкурсов
Last updated 1 month ago